留求艺—您的留学规划师

微分的几何意义是什么

74次

问题描述:

微分的几何意义是什么求高手给解答

最佳答案

推荐答案

几何意义:设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。

当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。当自变量是多元变量时,导数的概念已经不适用了(尽管可以定义对某个分量的偏导数),但仍然有微分的概念。如果f在点x处可微,那么它在该点处一定连续,而且在该点的微分只有一个。为了和偏导数区别,多元函数的微分也叫做全微分或全导数。

微分的几何意义是什么

其他答案

微分:dy=f'(x)*dx,微分就是该函数的导数乘以dx,微分的几何意义就是:直角三角形的高〔dy〕等于正切值〔斜率、导数即f'(x)〕乘以该三角形的底边〔dx〕。把这些微分即微小的dy累积起来不就得到三角形的高或着说得到了函数值的本身即y=f(x)吗?

积分是把各个面积为f(x)*dx〔注意不是f'(x)哦〕的小片〔微小的长方形〕的微小面积全部累积起来,这样是不是就得到了函数曲线与x轴所围成的面积呢?

为你推荐

网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  在线报名  |  网站地图