留求艺—您的留学规划师

我想知道费马大定律是怎么证明的

274次

问题描述:

我想知道费马大定律是怎么证明的希望能解答下

最佳答案

推荐答案

费马大定理的证明方法:x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。

但x^3+y^3=z^3却始终没找到整数解。最接近的是:6^3+8^3=9^-1,还是差了1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。因此,就有了:已知:a^2+b^2=c^2令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3……设:a=d^(n/2),b=h^(n/2),c=p^(n/2);则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3……当n=1时,d+h=p,d、h与p可以是任意整数。当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 => a^2+b^2=c^2。当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。扩展资料:费马大定理,由17世纪法国数学家皮耶·德·费玛提出。他断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。

我想知道费马大定律是怎么证明的

其他答案

费马大定律是由法国数学家费马提出的,但他并没有给出详细的证明。直到数学家安德鲁·怀尔斯在1994年提出了一种证明方法,这个方法被称为“怀尔斯证明”。

怀尔斯证明利用了数论和代数几何的知识,通过构造一种特殊的曲线来证明费马大定律。这个证明方法经过了严格的数学推导和验证,被广泛接受并被认为是费马大定律的有效证明之一。

其他答案

费马大定理证明过程:设:a=d^(n/2),b=h^(n/2),c=p^(n/2);则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3……当n=1时,d+h=p,d、h与p可以是任意整数。

1.若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立.

证:在定理原式a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1,

得到:(na)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m

原式化为:n^m(a^m+b^m)=n^m(c^m+d^m+e^m)

两边消掉n^m后得到原式.

所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数.

2.若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数.

证:取定理原式a^m+b=c^m

取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m

原式化为:n^m(a^m+b)=n^mc^m

两边消掉n^m后得到原式.

由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数.

所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立.

其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数.

为你推荐

网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  在线报名  |  网站地图