留求艺—您的留学规划师

几何学发展的四个阶段

157次

问题描述:

几何学发展的四个阶段希望能解答下

最佳答案

推荐答案

一、实验几何几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何。

我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”,古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。

二、理论几何随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊。古希腊许多数学家,如泰勒斯( Thales )、毕达哥拉斯( Pythagoras )、柏拉图( Plato )、欧几里德( Euclid )等人都对几何学的研究作出了重大贡献。特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。欧几里得(公元前330年—公元前275年),古希腊人,数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。最早的几何学兴起于公元前7世纪的古埃及,后经古希腊等人传到古希腊的都城,又借毕达哥拉斯学派系统奠基。在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓,成为科学进步的大势所趋。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作,成为几何第一人。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。直到今天,他所创作的几何原本仍然是世界各国学校里的必修课,从小学到初中、大学、再到现代高等学科都有他所创作的定律、理论和公式应用。在柏拉图学派晚期导师普罗克洛斯(约410~485)的《几何学发展概要》中,就记载着这样一则故事,说的是数学在欧几里得的推动下,逐渐成为人们生活中的一个时髦话题(这与当今社会截然相反),以至于当时亚里山大国王托勒密一世也想赶这一时髦,学点儿几何学。虽然这位国王见多识广,但欧氏几何却令他学的很吃力。于是,他问欧几里得“学习几何学有没有什么捷径可走?”,欧几里得笑道:“抱歉,陛下!学习数学和学习一切科学一样,是没有什么捷径可走的。学习数学,人人都得独立思考,就像种庄稼一样,不耕耘是不会有收获的。在这一方面,国王和普通老百姓是一样的。”从此,“在几何学里,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。斯托贝乌斯(约500)记述了另一则故事,一位学生曾这样问欧几里得:“老师,学习几何会使我得到什么好处?”欧几里得思索了一下,请仆人拿点钱给这位学生。欧几里得说:给他三个钱币,因为他想在学习中获取实利。那时候,人们建造了高大的金字塔,可是谁也不知道金字塔究竟有多高。有人这么说:“要想测量金字塔的高度,比登天还难!”这话传到欧几里得耳朵里。他笑着告诉别人:“这有什么难的呢?当你的影子跟你的身体一样长的时候,你去量一下金字塔的影子有多长,那长度便等于金字塔的高度!”三、解析几何勒内·笛卡尔(1596.3.31-1650.2.11)是世界著名的法国哲学家、数学家、物理学家,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者且提出了“普遍怀疑”的主张。黑格尔称他为“现代哲学之父”。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。公元 3 世纪,《几何原本》的出现,为理论几何奠定了基础。与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质。但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视。直到15、16 世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展。法国笛卡尔在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。在这样的思想指导下,笛卡尔提出了平面坐标系的概念,实现了点与数对的对应,将圆锥曲线用含有两面三刀个求知数的方程来表示,并且形成了一系列全新的理论与方法,解析几何就这样产生了。解析几何学的出现,大大拓广了几何学的研究内容,并且促进了几何学的进一步发展。

18 、 19 世纪,由于工程、力学和大地测量等方面的需要,又进一步产生了画法几何、射影几何、仿射几何和微分几何等几何学的分支。

四、现代几何尼古拉斯·伊万诺维奇·罗巴切夫斯基(1792.12.1—1856.2.24),俄罗斯数学家,非欧几何的早期发现人之一。在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。一方面,从改变几何的公理系统出发,即用和欧氏几何第五公设相矛盾的命题来代替第五公设,从而导致几何学研究对象的根本突破。俄罗斯数学家罗巴切夫斯基用“在同一平面内,过直线外一点可作两条直线平行于已知直线”代替第五公设,由此导出了一系列新结论,如“三角形内角和小于两直角”、“不存在相似而不全等的三角形”等等,后人称为罗氏几何学(又称双曲几何学)。波恩哈德·黎曼,德国数学家、物理学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼映照定理,黎曼-希尔伯特问题,黎曼思路回环矩阵和黎曼曲面中。他初次登台作了题为"论作为几何基础的假设"的演讲,开创了黎曼几何,并为爱因斯坦的广义相对论提供了数学基础。德国数学家黎曼从另一角度,“在同一平面内,过直线外任一点不存在直线平行于已知直线”代替第五公设,同样导致了一系列新理论,如“三角形内角和大于两直角”、“所成三角形与球面三角形有相同面积公式”等,又得到另一种不同的几何学,后人称为黎氏几何学(又称椭圆几何学)。习惯上,人们将罗氏几何、黎氏几何统称为非欧几何学。将欧氏几何(又称抛物几何学)、罗氏几何的公共部分统称为绝对几何学。另一方面,人们在对欧氏几何公理系统的严格分析中,形成了公理法,并由德国数学家希尔伯特在他所著《几何基础》中完善地建立起严格的公理体系,通常称为希尔伯特公理体系,希尔伯特公理体系是完备的,即用纯逻辑推理的方法,定能推演出系统严密的欧氏几何学。但如果根据该公理体系,逐步推演出欧氏几何中那些熟知的内容,却是一件相当繁琐的工作。

几何学发展的四个阶段

其他答案

几何学的发展可以分为四个阶段。

第一阶段是古代几何学,以古希腊的欧几里得几何为代表,研究平面和空间中的点、线、面的性质和关系。

第二阶段是非欧几何学的兴起,由黎曼、庞加莱等人提出,突破了欧几里得几何的限制,研究了曲线、曲面等非欧几何结构。

第三阶段是拓扑学的发展,研究了空间的连续性和变形性质,如同伦不变量等。

第四阶段是现代几何学的发展,包括微分几何、代数几何、几何分析等,将几何学与其他数学分支相结合,应用于物理学、计算机图形学等领域。

其他答案

几何学的发展史

几何学研究的主要内容,为讨论不同图型的各类性质,它可说是与人类生活最密不可分的.远自巴比伦,埃及时代,人们已知道利用一些图的性质来丈量土地,划分田园.但是并没有把它当作一门独立的学问来看,只把它当作人类生活中的一些基本常识而已.真正认真去研究它,则是从古希腊时代才开始的.所以由此,我们约略的将几何学的发展,分为下列几个方向:

古希腊的几何学

解析几何

投影几何

非欧几何

微分几何

几何的公理化

古希腊的几何学的发展

1. 发展阶段

2. 古希腊几何发展的原因

3. 欧基里德的贡献———介绍"Elements"

4. 阿基米德的贡献

5. 阿波罗尼阿斯的贡献

6. 古希腊几何学中的著名问题

(1)方圆问题

(2)倍积问题

(3)三等分角问题

(4)平行公设

其他答案

几何学的形成和发展大致经历了四个基本阶段。

一、实验几何

二、理论几何

三、解析几何

四、现代几何

为你推荐

网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  在线报名  |  网站地图