留求艺—您的留学规划师

博弈论课程考试在线辅导

2025年【出国留学】申请条件/费用/专业咨询 >>

留学院校申请条件是什么?留学费用是多少?学校留学专业都有哪些?

点击咨询

博弈论课程在线辅导找专注留学生课程辅导的留求艺,博弈论专业老师在线一对一辅导,确保你的博弈论作业,博弈论考试顺利通过。

博弈论课程考试在线辅导

Doval,Laura,and Vasiliki Skreta. "Mechanism design with limited commitment."arXiv preprint arXiv:1811.03579(2018).  ECMA R&R

把mechanism定义成一个tuple

R为input message (agent的report)

S为output message (principal观测到的结果)

b为communication device,把R映射到S

a为assignment rule,把S映射到allocation A上

agent的private information 为

full commitment下

根据revelation principle我们有Sp的optimal direct mechanism

===========

假设现在limited commitment

动态环境里principal每期选择一个mechanism

s.t

带星号表示finite support的概率

然后这种环境下的类似revelation principle的机制被叫做canonical mechanism

timline

t期开始时,收到公共信号

principal选择当期的机制Mt

agent选择策略p :加入 (1)或者不加入 (0) (不加入则获得一个null allocation)

加入则释放私人input

根据r生成分布

释放公共output

根据s生成分布

释放allocation  ( 表示t期时可能的allocation)

公共历史(=principal知道的)为

私人历史(=agent知道的)为

agent在t期的策略为一个pair 分别是参加不参加和参加的话input什么message

这里下标表示agent的type v

principal在t期的策略为根据历史随机选择一个机制,其中M为所有机制的集合

principal额外还有一个belief,关于两点:agent的type和agent的私人历史

这里 为所有可能的私人历史集合(consistent w.r.t. 公共历史)

两个player的payoff只关于type v和allocation

这样一个动态博弈被叫做mechanism selection game。而如果只考虑选择canonical mechanism,其reduced form被叫做 canonical (mechanism selection )game

其solution concept为pBE: 所有人的策略满足sequential rationality,belief满足贝叶斯法则(on path)

Main THM (revelation principle的变种)

对mechanism selection game的任何pBE而言,存在一个payoff equivalent的pBE满足

1) 每期选择的机制都是一个canonical mechanism

2) IR: 此pBE下

3) Sp:

4) belief Bayes plausible (recommended beliefs coincide with realized beliefs)

又有

prop: Any equilibrium payoff of the canonical game can be attained in an equilibrium

of the mechanism selection game.

pS:定理的第四点最有趣,因为它将问题转换成了一个information design的Bayes game (当然这是一个带了IR和Sp的constrained information design):

principal在t期当sender发一个belief给t+1期的principal,t+1期的principal作为receiver根据这个updated belief去选择机制 (这个部分主要在文章的第五章,通过构造dual problem)

计算出来的结果是这个discount要大于1/3才有理由先采取合作策略,由于案例中概率是0.75,符合条件,所以应该采取恐怖扳机策略。不过老师在计算what of reward的时候用的是2(a+a^2+a^3+……),有些疑惑为什么不用乘以1-a,因为比如就继续了两次,应该是a^2*(1-a)才是这个事件的概率吧,如果是这种计算方式,计算出来概率要大于1/2才行。

对于任意M 1,N(或M,N 1)的矩阵,假设存在后手必胜策略

先手必定可以在第一步采用策略使得矩阵M 1,N转变为M,N矩阵

由于对于M 1,N矩阵后手存在必胜策略

那么对于一个任意M,N的矩阵,存在先手必胜策略

令M’=M 1,则对于M,N存在先手必胜策略

这与假设矛盾,所以假设不成立

因此对于M,N=1的情况下,M 1,N矩阵不存在后手必胜策略

即当且仅当M=N=1时,有矩阵1x1存在后手必胜策略

1,不要选择劣势策略。2、理性选择导致次优结果。3、学会换位思考。4、将欲取之,必先知之。5、大部分人都是自私的。

不够严谨

1.劣势策略是指严格下策吗?严格下策在博弈中自然会被排除,但如果你所指的是纳什均衡相对的帕累托上策,那相对劣势的纳什均衡可能还真是选择的必然

2.理性选择不一定是次优结果,在重复博弈中完全有机会通过实施触发策略实现最优结果

3.对于完全但不完美信息动态博弈,不完美信息一方没有能力换位思考,因为两者信息严重不对称

4.同样是对于不完美信息动态博弈,对于不完美信息一方者,你都不知道,怎么取之?

5.博弈论的前提是理性人,有限理性等,而不是大部分是自私的,自私这个东西人人都有,但自私更深层次的是利益最大化,成本最小化,效用最大化等动机,并且这种自私并非是单独的自私,也可能是群体性自私,比如说国际卡特尔,关税同盟等关于MxN取石子问题:该问题一般被称为Chomp游戏。

可以证明除了1x1的情况外,先手有必胜策略。其他网友的评论已经有给出证明方法了,用反证法结合一个小技巧即可证明。一般也称该小技巧为strategy stealing argument。原始证明由 David Gale给出。

然而,该证明方法只给出了结论,并未能给出具体的必胜策略。我目前查到的资料显示该问题的具体必胜策略目前仍未解决。只有一些特例的必胜策略被给出,比如M=N的情况,或者2xN的情况,以及3xN的情况在2002年被解决。

此外,当M和N的规模较小时,计算机编程可以给出具体的必胜策略(应该也是用SG函数)。N和M规模较大时,目前无法解决。关于MxN取石子问题:该问题一般被称为Chomp游戏。

可以证明除了1x1的情况外,先手有必胜策略。其他网友的评论已经有给出证明方法了,用反证法结合一个小技巧即可证明。一般也称该小技巧为strategy stealing argument。原始证明由 David Gale给出。

然而,该证明方法只给出了结论,并未能给出具体的必胜策略。我目前查到的资料显示该问题的具体必胜策略目前仍未解决。只有一些特例的必胜策略被给出,比如M=N的情况,或者2xN的情况,以及3xN的情况在2002年被解决。

此外,当M和N的规模较小时,计算机编程可以给出具体的必胜策略(应该也是用SG函数)。N和M规模较大时,目前无法解决。

目前只有反证法的那位网友是对的,其他的构造性证明方法都为问题。谁能给个靠谱的构造性证明吗?

这是个典型的impartial combinatorial game,我反向推导可以得到几个p-position,比如呈L型且竖直方向的点数和水平方向的点数相同时是一个p-position,仅有两行且第2行比第1行少1个点时也是p-position,总共N行:最底下两行为N 1个点,上面的N-2行为2个点时也是个p-position。。。

但是NxM完整布局的情况实在过于复杂,我研究了很多天也没有找到一个玩法可以保证先手必胜(但是我们知道先手是必胜的)。

本文地址:https://www.liuqiuyi.com/liuxue/42869.html

转载说明:文章《博弈论课程考试在线辅导》由【留求艺】原创发布(部分转载内容均有注明出处,如有侵权请告知),转载请注明文章来源。

博弈论课程考试在线辅导的相关文章
  • 留学生弈论辅导

    博弈论辅导出国留学申请经济学、金融学、数学等专业的比较多,在这些课程中需要用到一个共同的课程就是博弈论,对于博弈论还是有很多学子不了解,下面小编为学子介绍一下博弈论课程概述、课程内容及博弈论的类型,感......

  • 弈论课程考试在线辅导

    博弈论课程在线辅导找专注留学生课程辅导的留求艺,博弈论专业老师在线一对一辅导,确保你的博弈论作业,博弈论考试顺利通过。...

  • 弈论经济学考试在线解答

    博弈论是现代数学的一个新分支,并且也是运筹学的一个重要学科,它的应用也是很广泛的,尤其是学习金融、经济、计算机等专业的学子要重视这项课程,对于博弈论课程还是有很多的学子不了解,下面小编针对博弈论在线解......

  • 辅导弈论课程培训辅导班

    很多学子都没有听说过博弈论,博弈论的应用范围也是比较广泛的,下面是博弈论辅导详解的介绍,文中主要介绍了博弈论的概述及 以加州大学伯克利分校为例讲述了经济学的相关课程,加州伯克利分校是世界著名研究型大学......

  • 弈论作业在线补课

    博弈论是现代数学的一个分支,是经济学标准分析工具,也是经济学专业的重要课程,下面小编为学子介绍一下博弈论简述,希望对学子有所帮助,博弈论作业辅导选择留求艺,留求艺留学是国内首创的留学生学术辅导中心,也......

  • 弈论(基础)作业课程在线辅导

    下面是博弈论(基础)作业课程在线辅导的介绍,小编主要为学子介绍博弈论基础的内容及经济学的概述、课程设置,在经济学学习中会涉及到博弈论的内容,而博弈论(基础)是部分经济学分支教材用书,学子如果打算申请经济学......

刘老师


从事留学10年以上,帮助过很多的国内学生处理留学申请,签证,生活,学习等各方面的问题,有丰富的留学咨询和实战经验。凭借着个人丰富的生活历程和申请经验,会准确的指导学生海外申请和学习生活的相关注意事项,成功帮助众多学子完成梦校留学的梦想。

留学方案获取