加拿大本科应用数学,数学分析
高等数学对于大多数工科生来讲相当于工具。...
微分方程指含有未知函数及其导数的关系式。解微分方程就是寻找出它的未知函数。微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。还有一些微分方程在化学、工程学、经济学和人口统计等领域都有应用。数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。微分方程可分为以下几类,而随着微分方程种类的不同,其相关研究的方式也会随之不同。
偏微分方程常微分方程(ODE)是指微分方程的自变量只有一个的方程。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。
偏微分方程(pDE)是指微分方程的自变量有两个或以上,且方程式中有未知数对自变量的偏微分。偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中,这种偏微分方程则称为混合型。
约束条件微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
唯一性存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
出国留学你也遇到过以下问题吗?跟不上上课节奏?疑难问题没人辅导?作业有困难,完成不了?临近考试,不知如何复习?挂科后,补考没把握?论文不知如何下笔?我们都可以搞定!小伙伴们快来加入我们的吧!~~ 留求艺专业留学辅导,一对一双语24小时无时差授课。
本文地址:https://www.liuqiuyi.com/liuxue/38254.html
转载说明:文章《加拿大本科应用数学,微分方程》由【留求艺】原创发布(部分转载内容均有注明出处,如有侵权请告知),转载请注明文章来源。
高等数学对于大多数工科生来讲相当于工具。...
应用数学中数学这门课程对于想要学习计算机算法编程的同学来说非常重要。...
微分方程指含有未知函数及其导数的关系式。...
什么是微积分,我们为什么会发明及使用微积分?...
复变函数是在数学当中的一个分支学科,它的研究对象是复变数的函数,复变函数的历史非常的悠久,理论与内容也相对的完美与枫树,复变函数在数学许多分支、力学以及工程技术科学中有着广泛的应用。...
数理统计分析法(mathematical statistics method)是在矿床勘探中,用数理统计的原理研究勘探网度的一种方法。...
定量分析法(quantitative analysis method)是一种针对社会现象的数量特征、数量变化以及数量关系进行分析的一种方法。...
高等代数其实算得上是高等数学的一部分,初级的代数会从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。...
数学专业其实可以大体分成三个方向:数学专业,数学与应用数学专业,信息与计算科学专业。...
加拿大大学在“偏微分方程及其应用”这项研究方面,是经由很多专业学者与研究人员经过几代人的努力研究,加拿大大学数学与统计学院且伴随着数学学科的发展而自然形成的一个研究群体。...
从事留学10年以上,帮助过很多的国内学生处理留学申请,签证,生活,学习等各方面的问题,有丰富的留学咨询和实战经验。凭借着个人丰富的生活历程和申请经验,会准确的指导学生海外申请和学习生活的相关注意事项,成功帮助众多学子完成梦校留学的梦想。